1. Accidents at an intersection depend on road conditions: Dry (D), Wet (W), or Icy (I). The probabilities of an accident (A) are 0.001 if dry, 0.10 if wet and 0.30 if icy. It is dry 80% of the time, wet 15%. Dry, wet, and icy are mutually exclusive and collectively exhaustive.
(a) What is the probability of an accident?
$P(A)=P(A \mid D) P(D)+P(A \mid W) P(W)+P(A \mid I) P(I)$
$P(A)=0.001 \times 0.8+0.1 \times 0.15+0.3 \times 0.05=0.0008+0.015+0.015=0.0308=\underline{0.03}$

Theorem of Total
Probability
D

(b) What is the probability that three such intersections have no accident? Assume the accident probability is independent.
$P\left(A_{1}{ }^{c} \cap A_{2}{ }^{\mathrm{c}} \cap \mathrm{A}_{3}{ }^{\mathrm{c}}\right)=\mathrm{P}\left(\mathrm{A}_{1}{ }^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{A}_{2}{ }^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{A}_{3}{ }^{\mathrm{c}}\right)=(1-0.0308)^{3}=0.9104=\underline{0.91}$
2. Three intersections are arrayed along a straight road. The probability of a red light at each intersection is A, B, and C, respectively. Given: $P(A)=0.3, P(B \mid A)=$ $0.6, P\left(B \mid A^{c}\right)=0.1, P(C \mid B)=0.6, P\left(C \mid B^{c}\right)=0.1$, and C is independent of A.
(a) $P(B)=$?
$P(B)=P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)=0.6 \times 0.3+0.1 \times 0.7=0.18+0.07=\underline{0.25}$ (ToTP)

(b) What is the probability that all three are green?
$P\left(C^{c} \cap A^{c} \cap B^{c}\right)=P\left[\left(C^{c} \cap\left(A^{c} \cap B^{c}\right)\right]=P\left[C^{c} \mid\left(A^{c} \cap B^{c}\right)\right] P\left(A^{c} \cap B^{c}\right)\right.$
Because C and A are independent: $\mathrm{P}\left[\mathrm{C}^{\mathrm{C}} \mid\left(\mathrm{A}^{\mathrm{C}} \cap \mathrm{B}^{\mathrm{c}}\right)\right]=\mathrm{P}\left(\mathrm{C}^{\mathrm{c}} \mid \mathrm{B}^{\mathrm{c}}\right)$
And, using the complement: $P\left(C^{c} \mid B^{c}\right)=1-P\left(C \mid B^{c}\right)$
So, $P\left(C^{c} \cap A^{c} \cap B^{c}\right)=\left[1-P\left(C \mid B^{c}\right)\right] P\left(A^{c} \cap B^{c}\right)=(1-0.1) 0.63=\underline{0.567}$
(c) $\mathrm{P}(\mathrm{C})=$?
$P(C)=P(C \mid B) P(B)+P\left(C \mid B^{C}\right) P\left(B^{C}\right)=0.6 \times 0.25+0.1 \times 0.75=0.15+0.075=\underline{0.225}$ (ToTP)
(Note: $P(C \mid B) P(B)=P(C \cap B)=0.15$ and $\left.P\left(C \cap B^{C}\right)=0.075\right)$

